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Aquatic micro-organisms and artificial microswimmers locomoting in turbulent flow
encounter velocity gradients that rotate them, thereby changing their swimming
direction and possibly providing cues about the local flow environment. Using
numerical simulations of ellipsoidal particles in isotropic turbulence, we investigate the
effects of body shape and swimming velocity on particle motion. Four particle shapes
(sphere, rod, disc and triaxial ellipsoid) are investigated at five different swimming
velocities in the range 06Vs 6 5uη, where Vs is the swimming velocity and uη is the
Kolmogorov velocity scale. We find that anisotropic, swimming particles preferentially
sample regions of lower fluid vorticity than passive particles do, and hence they
accumulate in these regions. While this effect is monotonic with swimming velocity,
the particle enstrophy (variance of particle angular velocity) varies non-monotonically
with swimming velocity. In contrast to passive particles, the particle enstrophy is a
function of shape for swimming particles. The particle enstrophy is largest for triaxial
ellipsoids swimming at a velocity smaller than uη. We also observe that the average
alignment of particles with the directions of the velocity gradient tensor are altered
by swimming leading to a more equal distribution of rotation about different particle
axes.

Key words: isotropic turbulence, micro-organism dynamics, particle/fluid flows

1. Introduction
The dynamics and transport of swimming particles in a background flow are

important for topics as wide ranging as aquatic ecology (Kiørboe 2008; Dusenbery
2009; Guasto, Rusconi & Stocker 2012; Koehl & Cooper 2015; Fuchs & Gerbi
2016), active matter systems (Underhill, Hernandez-Ortiz & Graham 2008; Takatori,
Yan & Brady 2014) and bio-inspired design (Dreyfus et al. 2005; ten Hagen et al.
2014). Small swimming particles can represent planktonic micro-organisms as well
as artificial microswimmers.

In this study we consider small, anisotropic, non-interacting, swimming particles in
a background turbulent flow. Previous work on swimming particles in a background
flow has found that particles can exhibit small-scale clustering, vortical trapping and

† Email address for correspondence: pujara@berkeley.edu
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enhanced or suppressed transport relative to passive particles. In a two-dimensional
laminar flow, Torney & Neufeld (2007) found that there was a minimum swimming
velocity, dependent on particle aspect ratio, for which there were no barriers to
particle transport. In a similar flow field, Khurana, Blawzdziewicz & Ouellette (2011)
and Khurana & Ouellette (2012) showed that the diffusion of swimming particles
can be lower relative to passive particles, but that this effect is sensitive to the
swimming velocity, particle shape and whether the particle motion includes stochastic
terms. The case of gyrotactic microswimmers, where there is non-uniform distribution
of material density that orients particle swimming upward, has received significant
attention given its importance to phytoplankton populations. It has been found that the
particle rotations caused by velocity gradients and a non-uniform density distribution
combine to produce hydrodynamic focusing of such micro-organisms (Kessler 1985),
which may explain the existence of thin layers of phytoplankton found in the ocean
(Durham, Kessler & Stocker 2009), small-scale clustering (Durham et al. 2013;
De Lillo et al. 2014; Fouxon & Leshansky 2015) and enhanced encounter rates
(Gustavsson et al. 2016). The results of gyrotactic and non-gyrotactic particles have
been found to depend on whether the particle is spherical or a prolate spheroid.

Fluid turbulence is likely to play a dominant role in the dynamics of swimming
anisotropic particles in a vast range of applications. The study of passive anisotropic
particles in turbulent flows has led to new insights about the Lagrangian dynamics
of small-scale turbulent flow structures from the preferential alignments between
the particles’ axes and the directions of the velocity gradient tensor (Chevillard &
Meneveau 2013; Ni, Ouellette & Voth 2014; Pujara & Variano 2017). However, the
coupling between the particle shape and the velocity gradient tensor is likely to
be altered in surprising ways when particles deviate from fluid trajectories due to
swimming.

Zhan et al. (2013) investigated how swimming velocity and aspect ratio of
rod-shaped microswimmers in isotropic turbulence affected particle clustering. They
found that the clustering was strongest for the most elongated rod shapes swimming
at the highest velocities. The effect of aspect ratio was monotonic and reached
saturation for aspect ratios of three or larger, similar to results for the rotation rate
of passive axisymmetric particles (Parsa et al. 2012; Byron et al. 2015). Additionally,
the clustering was much weaker in turbulence compared to the two-dimensional
steady and unsteady laminar flows discussed above. By investigating particles in a
time-frozen snapshot of a turbulent velocity field, Zhan et al. (2013) concluded that
this was due to the complex flow topology of turbulent flows.

In this study, we aim to further understand how the coupling between particle shape
and swimming velocity affects the rotational kinematics of particles in homogenous,
isotropic turbulence. We extend the study of particle shape to disc-shaped and triaxial-
shaped ellipsoids. Given that the effect of aspect ratio has been found to be monotonic
for both passive and swimming particles in turbulence (see above), we choose to
only study high-aspect-ratio anisotropic particles. We focus on the particle enstrophy,
defined as the variance of the particle angular velocity, and its components aligned
with the particles’ principal axes. This allows us to investigate whether certain modes
of rotation (e.g. roll, pitch, or yaw) are preferred over others. We also examine the
sources of particle enstrophy, namely fluid vorticity and fluid strain. These indicate
the flow properties of the regions in which particles accumulate. Understanding the
biased sampling of the flow would indicate how even a weak amount of clustering
might influence particle navigation or the nature of particle encounters.

The remainder of this paper is organized as follows. In § 2, we introduce the
ellipsoidal particles and the equations of motion. In the appendix, we also discuss the
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Sphere Rod Disc Triaxial

FIGURE 1. (Colour online) Four different ellipsoids. The unit vectors (p1, p2, p3) show
the directions of the principal axes with corresponding diameters, d1, d2, d3. Repeated
equal diameters are not labelled. The swimming direction is p3, as indicated by the dashed
arrows.

simplifications made in computing particle dynamics. In § 3, we present the results,
which concern particle accumulation and particle enstrophy. Section 4 contains a
summary of the main results and how they may lead to an improved understanding
of how micro-organisms and microswimmers navigate through turbulent flows.

2. Particle motion
2.1. Ellipsoidal particles

The most general ellipsoid has three distinct principal axes with diameters along these
axes denoted by d1, d2, d3, where we label the axes such that d3 > d2 > d1. Therefore,
its shape is fully described by the ratios d3/d2 and d2/d1. An elongated shape has a
large value of d3/d2 and a flattened shape has a large value of d2/d1. We examine
particles of four different distinct shapes (see figure 1): sphere (d3/d2 = d2/d1 = 1),
rod (d3/d2= 10, d2/d1= 1), disc (d3/d2= 1, d2/d1= 10) and triaxial (d3/d2= d2/d1=

10). Note, the shapes in figure 1 are shown at lower aspect ratios than those used for
computations.

2.2. Equations of particle motion
We are interested in the case where neutrally buoyant particles swim in the direction
of their longest axis by generating a constant thrust. In a quiescent fluid, this causes
particles to translate at their intrinsic swimming velocity, Vs. In a turbulent flow, the
coupling between the background turbulent flow and the particle swimming can be
simplified by neglecting the effects of fluid inertia and particle inertia in the equations
for particle motion. This is possible under the following conditions:

d
η
� 1, (2.1a)

d
η

Vs

uη
� 1, (2.1b)

where d is a characteristic particle length scale, Vs is the particle’s intrinsic swimming
velocity and η, uη are the Kolmogorov length and velocity scales, respectively. Under
these limits, the particle velocity is given by the vector sum of the background fluid
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velocity and the particle’s intrinsic swimming velocity:

v = u+ Vs p3, (2.2)

where v is particle velocity, u is the background fluid velocity at the particle’s
location and Vs is the particle’s swimming velocity. In the appendix, we show how a
general equation of particle motion simplifies to (2.2) under the conditions in (2.1).
Equation (2.1b) shows that the dimensionless swimming velocity V ′s = Vs/uη can be
O(1) or larger as long as d/η is small enough.

If the background flow is non-uniform, velocity gradients cause the particle to rotate.
The rotational motion of an ellipsoidal particle in the limit of small inertia is given
by (Jeffery 1922):

ωp · p1 = (1/2)ω · p1 + λ1
(
pT

2 Sp3

)
, (2.3a)

ωp · p2 = (1/2)ω · p2 + λ2
(
pT

3 Sp1

)
, (2.3b)

ωp · p3 = (1/2)ω · p3 + λ3
(
pT

1 Sp2

)
, (2.3c)

where ωp is the angular velocity of the particle, ω is the fluid vorticity and S =
(1/2)[∇u + (∇u)T] is the fluid strain-rate tensor. λi for i = 1, 2, 3 are the shape
parameters given by

λ1 =
(d2/d3)

2
− 1

(d2/d3)2 + 1
; λ2 =

(d3/d1)
2
− 1

(d3/d1)2 + 1
; λ3 =

(d1/d2)
2
− 1

(d1/d2)2 + 1
. (2.4a−c)

The left-hand sides of equations (2.3a–c) represent rotations of the particle about
different particle axes, also referred to as yaw, pitch and roll, respectively. The
rates-of-change of orientation of the particle axes can be derived from (2.3a–c) (e.g.
see Pujara & Variano 2017) to give:

ṗ1 =Ωp1 − λ2p3

(
pT

3 Sp1

)
+ λ3p2

(
pT

1 Sp2

)
, (2.5a)

ṗ2 =Ωp2 + λ1p3

(
pT

2 Sp3

)
− λ3p1

(
pT

1 Sp2

)
, (2.5b)

ṗ3 =Ωp3 − λ1p2

(
pT

2 Sp3

)
+ λ2p1

(
pT

3 Sp1

)
, (2.5c)

where Ω = (1/2)[∇u− (∇u)T] is the fluid rotation rate tensor.

2.3. Particle trajectories and orientations in turbulence
The background turbulent fluid velocity is taken from the Johns Hopkins University
turbulence database, which contains a dataset of forced homogeneous isotropic
turbulence in a triply period box (Perlman et al. 2007). The Taylor micro-scale
Reynolds number is Reλ ≈ 433 and the ratio of large-eddy turnover time, T , to the
Kolmogorov time scale, τη, is given by T ≈ 45τη. The ratio of the root-mean-square
velocity,

√
〈u2〉, to the Kolmogorov time scale uη, is given by

√
〈u2〉/uη ≈ 10.

The coupled equations, equations (2.2) and (2.5), are solved using a staggered
second-order Runge–Kutta scheme with a time step of 0.009τη and particle data
are recorded every five integration steps. Where particle locations do not coincide
with the simulation grid and time steps, data of velocity and velocity gradients are
spatially and temporally interpolated using sixth-order Lagrange polynomials and
cubic Hermite interpolation, respectively (Perlman et al. 2007).

For each particle shape, five different swimming velocities are tested: V ′s= Vs/uη =
[0, 0.5, 1, 3, 5]. Analysis of passive particles (Vs= 0) has been previously presented in
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FIGURE 2. Probability density functions of the square of the fluid vorticity as sampled
by anisotropic swimming particles: (a) rod; (b) disc; (c) triaxial.

Pujara & Variano (2017) for more particle aspect ratios. For each case, 7500 particles
are initialized at random initial positions and random orientations and tracked for
approximately one large-eddy turnover time. Results are presented from data after the
particles have reached a statistically steady equilibrium with the flow, which takes
approximately 5τη. Thus, the averages are taken over different particles and over time
for 6τη 6 t 6 45τη.

3. Results
3.1. Particle accumulation

As swimming particles travel through the flow, they sample the fluid vorticity in a
biased manner. The probability density function (PDF) of the square of the fluid
vorticity as sampled by anisotropic swimmers is plotted in figure 2. The mean of the
PDF, i.e. the mean square fluid vorticity, is shown in figure 3. The PDF for passive
particles is independent of their shape and shows the squared fluid vorticity sampled
by fluid tracers. In a statistically stationary flow, spatially random sampling of fluid
vorticity would give an identical PDF to that of fluid tracers. Instead, we observe a
biased sampling of fluid vorticity, which indicates a non-random spatial distribution.
The data in figures 2 and 3 show that swimming particles sample regions of high
vorticity with a lower probability than passive particles do. In other words, swimming
causes particles to accumulate in regions of lower vorticity. Clustering of rod-shaped
swimming particles in turbulence has previously been reported by Zhan et al. (2013),
but we find that this occurs for discs and triaxial ellipsoids as well. We also find
that this clustering occurs specifically in regions of relatively low fluid vorticity. In
turbulence, it is known that high magnitudes of fluid vorticity and dissipation are
correlated (Zeff et al. 2003), which means that swimming particles avoid the most
dynamically active regions of the flow, where fluid vorticity and dissipation are much
higher than their average values.

In the phase space spanned by material line stretching and square of the fluid
vorticity, the mean trajectories of fluid tracers have been shown to be cycles in which
high magnitude of vorticity is followed by high magnitude of stretching (Kramel et al.
2016). This suggests one possible mechanism for swimming particles accumulating
in regions of lower vorticity: as particles undergo stretching, their longest axis tend
towards the stretching direction and allows them to swim out of the patch of fluid
before it experiences high vorticity.

3.2. Particle enstrophy
Particle accumulation is a monotonic function of swimming velocity, but as we show
in this section, the particle enstrophy variation is non-monotonic. Fluid enstrophy
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FIGURE 3. (Colour online) Sampled fluid enstrophy (mean square fluid vorticity) for
anisotropic swimming particles as a function of dimensionless swimming velocity: rods
(red diamonds); discs (blue squares); triaxials (green triangles).

is typically defined as the square of the fluid vorticity, ω2 (e.g. Pope 2000). We
define the particle enstrophy as the variance of the particle angular velocity. Since the
flow is isotropic, 〈ωp〉 = 0 and the particle enstrophy is given by

〈
ω2

p

〉
. The particle

enstrophy is the variance of the particle angular velocity (or equivalently, the mean
square particle angular velocity). The particle enstrophy can be expressed as the sum
of the mean square angular velocities about each particle axis:〈

ω2
p

〉
=

〈(
ωp · p1

)2
〉
+

〈(
ωp · p2

)2
〉
+

〈(
ωp · p3

)2
〉
. (3.1)

The mean square angular velocity about each axis can be decomposed into three
dynamically relevant components by taking the square of (2.3):〈(

ωp · p1

)2
〉
=

1
4

〈(
ω · p1

)2
〉
+

〈
λ2

1

(
pT

2 Sp3

)2
〉
+
〈
λ1
(
ω · p1

) (
pT

2 Sp3

)〉
, (3.2a)〈(

ωp · p2

)2
〉
=

1
4

〈(
ω · p2

)2
〉
+

〈
λ2

2

(
pT

3 Sp1

)2
〉
+
〈
λ2
(
ω · p2

) (
pT

3 Sp1

)〉
, (3.2b)〈(

ωp · p3

)2
〉
=

1
4

〈(
ω · p3

)2
〉
+

〈
λ2

3

(
pT

1 Sp2

)2
〉
+
〈
λ3
(
ω · p3

) (
pT

1 Sp2

)〉
. (3.2c)

This decomposition shows that particle enstrophy has contributions from vorticity-
induced rotations, strain-induced rotations and the cross-correlation of rotations due
to vorticity and strain.

Pujara & Variano (2017) showed that for passive particles, strain-induced rotations
were cancelled almost exactly by the cross-correlation of vorticity and strain for
all shapes. Hence, the overall particle enstrophy was found to be a very weak
function of shape. In figure 4, we see this is not true if particles start swimming.
The reason for this can be seen in figure 5, which plots the separate contributions
from vorticity-induced rotations, strain-induced rotations and the cross-correlation
of rotations due to vorticity and strain. For anisotropic swimming particles, the
cross-correlation of vorticity and strain is negligibly small. This allows strain
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FIGURE 4. (Colour online) Particle enstrophy (variance of the particle angular velocity)
for anisotropic swimming particles: rods (red diamonds); discs (blue squares); triaxials
(green triangles)

contributions to have a significant influence on the overall particle enstrophy. Of the
different shapes, triaxial particles have the largest enstrophy for a given swimming
velocity because fluid strain can drive rotations about all three particle axes. The
accumulation of anisotropic swimming particles in regions of relatively low fluid
vorticity can also be seen in the contributions from vorticity-induced rotations in
figure 5.

The influence of swimming speed on anisotropic particle enstrophy is non-
monotonic because of two competing effects. The strain contributions act to increase
the particle enstrophy as V ′s increases from zero, but as particles start to swim
faster, they cluster in regions of low fluid vorticity. For V ′s > 1, this biased sampling
outweighs the strain contribution and the total particle enstrophy starts decreasing
(figure 4). The maximum particle enstrophy occurs near V ′s = 0.5. A swimming
speed of V ′s = 1 indicates that particles move out of the smallest turbulent motions
at the same rate at which those motions themselves evolve. The maximum particle
enstrophy seems to occur when particles swim rapidly enough so that the negative
cross-correlation between vorticity-induced rotations and strain-induced rotations
becomes negligible, but slowly enough to sample almost the full lifetime of the
smallest turbulent motions.

3.3. Particle alignment and rotations about particle axes
The average alignment of particles with the directions of the velocity gradient tensor
determine how the particle enstrophy is partitioned along the particles’ axes (see (3.2)).
The directions of the velocity gradient tensor are denoted by eω, the unit vector in
the vorticity direction, and ei for i= 1, 2, 3, where e1 corresponds to the eigenvector
for the most extensional eigenvalue of the strain-rate tensor and e3 corresponds to the
eigenvector for the most compressional eigenvalue of the strain-rate tensor.

For passive particles, it is known that the longest particle axis tends to be strongly
aligned with eω and e2, and weakly aligned with e1, whereas the shortest particle
axis tends to be strongly aligned with e3 (Chevillard & Meneveau 2013; Pujara &
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FIGURE 5. (Colour online) Summary of particle enstrophy (variance of the particle angular
velocity) and its components. Each of the four groups is a single particle shape. Within
each group, the five columns represent the five swimming velocities as shown under the
bars for spherical particles. The vertically stacked bars comprising each column are the
contributions to particle enstrophy from vorticity-induced rotations (blue), strain-induced
rotations (cyan) and the cross-correlation between vorticity and strain (yellow) as in (3.2).
The overall particle enstrophy is given by the sum of vertically stacked bars.

0.2
0 1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8(a) (b) (c)

0.2
0 1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.2
0 1 2 3 5

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 6. (Colour online) Average alignment of particles with directions of the velocity
gradient tensor: rods (red diamonds); discs (blue squares); triaxials (green triangles). (a)
Longest particle axis and vorticity; (b) longest particle axis and the most extensional strain
direction; (c) shortest particle axis and most compressional strain direction. A value of 1/3
indicates random alignment. The typical 95 % uncertainty level is ±0.003.

Variano 2017). Figure 6 shows that these results are altered by swimming. The average
alignment is shown in figure 6 by plotting the expectation of the square of the inner
product between different unit vectors. Values close to 1 signify a strong tendency to
the be aligned whereas values close to 0 signify a strong tendency to be orthogonal.
A value of 1/3 is indicative of a flat probability density of the inner product, i.e.
random alignment. Strikingly, figure 6 shows that particle alignment changes for small
swimming velocities relative to the case of passive particles. The alignment between
fluid vorticity and the longest particle axis is weakened (figure 6a) and the longest

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Be

rk
el

ey
 L

ib
ra

ry
, o

n 
18

 F
eb

 2
01

8 
at

 0
3:

21
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.912
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


364 N. Pujara, M. A. R. Koehl and E. A. Variano

particle axis aligns more strongly with the most extensional strain direction (figure 6b).
Comparing figures 6(a,b), we see that for small swimming velocities, p3 aligns more
strongly with e1 than with eω. This effect is most pronounced for elongated particles
(rod, triaxial). At small swimming velocities, the alignment of the shortest particle
axis with the most compressional strain direction (figure 6c) also becomes stronger,
particularly for flattened particles (disc, triaxial).

The changes in particle alignment with swimming velocity are non-monotonic.
Like the peak of the particle enstrophy, the strongest alignment of particles with
the strain-rate directions occurs near V ′s = 0.5. In this range of swimming velocity,
swimming particles align in an intuitive way with the strain rate with the longest
axis aligned with the most stretching direction and the shortest axis aligned with the
most compressional direction.

Particle alignment also affects how particle enstrophy is split into components about
different particle axes. The mean square particle angular velocity about each particle
axis is shown in figure 7. At moderate swimming velocities, the particle enstrophy
is almost equal for all three particle axes for rods. For example, while passive rods
rotate most commonly about their axis of symmetry (commonly referred to as spinning
or rolling), swimming rods rotate most commonly in reorientations of their axis of
symmetry (commonly referred to as tumbling). Discs, on the other hand, rotate most
commonly by reorientations of their axis of symmetry (tumbling) regardless of their
swimming velocity. The triaxial particle exhibits features of both discs and rods with
the notable result that the triaxial particle swimming at small velocities is equally
likely to rotate about its longest and middle axes (roll and pitch, respectively) but
unlikely to rotate about its shortest axis (yaw). At high swimming velocities, particles
of all shapes seem to move towards equipartition of enstrophy amongst the particle
axes.

4. Summary discussion
By using a kinematic model for computing the motion of ellipsoidal swimming

particles in a turbulent flow, valid if d/η � 1 and (Vsd)/(uηη)� 1, we show how
body shape and swimming velocity affect the rotational statistics of particles and
their accumulation. We find that, compared to passive particles, anisotropic swimming
particles accumulate in regions of relatively lower fluid vorticity and avoid the most
dynamically active regions of the flow where velocity gradients have large magnitudes.
We also find that the variance of particle angular velocity increases with swimming
velocity for Vs < uη and decreases for larger swimming velocities. The increase seen
for moderate velocities is due to the contribution of strain-induced particle rotations.
The decrease seen at larger swimming velocities is due to particle clustering in
regions of lower fluid vorticity. The average alignment of particle axes with the
directions of the fluid velocity gradient tensor changes significantly from passive
particles to particles swimming at moderate swimming velocities: the longest particle
axis (and direction of swimming) changes from being most strongly aligned with
the fluid vorticity to being most strongly aligned with the most stretching direction
of the strain-rate tensor. This suggests that the swimming particles will, on average,
experience greater stretching along their longest axis and greater compression along
their shortest axis, compared to passive particles. The altered alignment also results
in more even partitioning of enstrophy amongst rotations about all three particle axes.
For example, while passive rods preferentially rotate about their axis of symmetry
(spinning over tumbling, Byron et al. 2015), swimming rod-shaped particles primarily
tumble.
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FIGURE 7. (Colour online) Partitioning of particle enstrophy amongst the particle’s axes
for different shapes and swimming velocities: (a) disc; (b) triaxial; (c) sphere; (d) rod.
The total particle enstrophy is the sum of bars of different colours in each subgroup.
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Appendix A
In this appendix, we show that the validity of (2.2) in a turbulent flow rests on the

following conditions:

d
η
� 1, (A 1a)

d
η

Vs

uη
� 1, (A 1b)

where d is a characteristic particle length scale and η, uη are the Kolmogorov length
scale and velocity scale, respectively. We assume the particle generates a constant
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thrust, which, in the absence of a background flow, balances the drag and leads to the
particle translating with a constant velocity. We denote this velocity as the particle’s
intrinsic velocity, Vs. By re-expressing (A 1b) as Vsd/ν� 1 using the identity ηuη/ν≡
1, we note that particle swimming is characterized by a low Reynolds number.

We start with the following formulation of particle motion (similar to (26) in Maxey
& Riley 1983):

m
dv

dt
=m

Du
Dt
+ Ts p3 + f , (A 2)

where m is the mass of the neutrally buoyant particle. The time rate of change
following the particle is denoted as d/dt and the time rate of change following
the fluid is denoted as D/Dt. The terms on the right-hand side represent force
due to undisturbed flow (including pressure gradient and viscous stresses), the
swimming thrust (aligned with the particle’s swimming direction) and force due
to the disturbance flow created by the presence of the particle, respectively.

The separation of the fluid force on the particle into the force due to the undisturbed
flow and the force due to the disturbance flow rests on the following assumptions
(similar to equation (17) in Maxey & Riley 1983):

d2uη
ην
� 1, (A 3a)

|v − u| d
ν

� 1. (A 3b)

The above conditions state that the Reynolds number needs to be small in two
different ways: a low Reynolds number based on particle size and the background
fluid shear rate as well as a low Reynolds number based on particle size and slip
velocity. Additionally, we have implicitly assumed that the particle diameter is small
compared to the smallest length scale in the flow by writing the force due to the
undisturbed flow as proportional to the local fluid acceleration. In a turbulent flow,
this requires d� η (A 1a).

To calculate f , we need to solve the disturbance flow created by the particle
swimming, which is subject to a no-slip boundary condition on the particle surface
and to the condition that the disturbance flow vanishes far from the particle. The
disturbance flow is evaluated in the particle frame and we assume it to be a steady
Stokes flow (A 1b). Without the time-derivate term in the Stokes equation, the added
mass and Basset history forces do not arise and the only force due to the disturbance
flow is the Stokes drag, which is proportional to the characteristic particle length
scale and its slip velocity, i.e. f ∼O(ρνd |v − u|).

The intrinsic swimming velocity can be expressed in terms of the swimming thrust
and the drag when the particle swims in a quiescent fluid. This relationship can be
inverted to express thrust in terms of the intrinsic swimming velocity. In the low
Reynolds number regime required by (A 1b), this gives Ts =Dp3Vs, where Dp3 is the
coefficient of proportionality for the Stokes drag for the particle in the p3 direction.
The coefficient of proportionality is Dp3 ∼O(ρνd).

We can now evaluate the relative importance of the inertia terms and the Stokes
drag term in (A 2). The particle mass is m∼O(ρd3). The acceleration of the particle
and fluid parcels in a turbulent flow are dominated by the smallest scales of motion:
dv/dt∼Du/Dt∼ uη/τη. This shows that the inertia terms are ∼O(ρd3uη/τη), whereas
the Stokes drag term is ∼O(ρνd |v − u|). The ratio of the inertia to the Stokes drag
is small under the conditions in (A 3a). Thus, the inertia terms can be neglected and
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(A 2) simplifies to the balance of the swimming thrust and the Stokes drag. In this
case, it is now evident that the Stokes drag must act in the opposite direction to the
swimming giving f = −Dp3(v − u). Substituting f and Ts into (A 2) after neglecting
the inertia terms gives

0=Dp3Vs p3 −Dp3(v − u), (A 4)
which simplifies to (2.2): v = u+ Vs p3.

REFERENCES

BYRON, M., EINARSSON, J., GUSTAVSSON, K., VOTH, G., MEHLIG, B. & VARIANO, E. 2015
Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.

CHEVILLARD, L. & MENEVEAU, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles
in isotropic turbulence. J. Fluid Mech. 737, 571–596.

DE LILLO, F., CENCINI, M., DURHAM, W. M., BARRY, M., STOCKER, R., CLIMENT, E. &
BOFFETTA, G. 2014 Turbulent fluid acceleration generates clusters of gyrotactic microorganisms.
Phys. Rev. Lett. 112, 044502.

DREYFUS, R., BAUDRY, J., ROPER, M. L., FERMIGIER, M., STONE, H. A. & BIBETTE, J. 2005
Microscopic artificial swimmers. Nature 437, 862–865.

DURHAM, W. M., CLIMENT, E., BARRY, M., DE LILLO, F., BOFFETTA, G., CENCINI, M. &
STOCKER, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nature
Commun. 4, 2148.

DURHAM, W. M., KESSLER, J. O. & STOCKER, R. 2009 Disruption of vertical motility by shear
triggers formation of thin phytoplankton layers. Science 323, 1067–1070.

DUSENBERY, D. B. 2009 Living at Micro Scale: The Unexpected Physics of being Small. Harvard
University Press.

FOUXON, I. & LESHANSKY, A. 2015 Phytoplankton’s motion in turbulent ocean. Phys. Rev. E 92,
013017.

FUCHS, H. L. & GERBI, G. P. 2016 Seascape-level variation in turbulence- and wave-generated
hydrodynamic signals experienced by plankton. Prog. Oceanogr. 141, 109–129.

GUASTO, J. S., RUSCONI, R. & STOCKER, R. 2012 Fluid mechanics of planktonic microorganisms.
Annu. Rev. Fluid Mech. 44, 373–400.

GUSTAVSSON, K., BERGLUND, F., JONSSON, P. R. & MEHLIG, B. 2016 Preferential sampling and
small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116, 108104.

TEN HAGEN, B., KÜMMEL, F., WITTKOWSKI, R., TAKAGI, D., LÖWEN, H. & BECHINGER, C. 2014
Gravitaxis of asymmetric self-propelled colloidal particles. Nature Communications 5, 4829.

JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc.
Lond. A 102, 161–179.

KESSLER, J. O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313, 218–220.
KHURANA, N., BLAWZDZIEWICZ, J. & OUELLETTE, N. T. 2011 Reduced transport of swimming

particles in chaotic flow due to hydrodynamic trapping. Phys. Rev. Lett. 106, 198104.
KHURANA, N. & OUELLETTE, N. T. 2012 Interactions between active particles and dynamical

structures in chaotic flow. Phys. Fluids 24, 091902.
KIØRBOE, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.
KOEHL, M. A. R. & COOPER, T. 2015 Swimming in an unsteady world. Integr. Compar. Biol. 55,

683–697.
KRAMEL, S., VOTH, G. A., TYMPEL, S. & TOSCHI, F. 2016 Preferential rotation of chiral dipoles

in isotropic turbulence. Phys. Rev. Lett. 117, 154501.
MAXEY, M. R. & RILEY, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform

flow. Phys. Fluids 26, 883–889.
NI, R., OUELLETTE, N. T. & VOTH, G. A. 2014 Alignment of vorticity and rods with Lagrangian

fluid stretching in turbulence. J. Fluid Mech. 743, R3.
PARSA, S., CALZAVARINI, E., TOSCHI, F. & VOTH, G. A. 2012 Rotation rate of rods in turbulent

fluid flow. Phys. Rev. Lett. 109, 134501.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Be

rk
el

ey
 L

ib
ra

ry
, o

n 
18

 F
eb

 2
01

8 
at

 0
3:

21
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.912
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


368 N. Pujara, M. A. R. Koehl and E. A. Variano

PERLMAN, E., BURNS, R., LI, Y. & MENEVEAU, C. 2007 Data exploration of turbulence simulations
using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing
Series: SC ’07, Reno, NV, ACM.

POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.
PUJARA, N. & VARIANO, E. A. 2017 Rotations of small, inertialess triaxial ellipsoids in isotropic

turbulence. J. Fluid Mech. 821, 517–538.
TAKATORI, S. C., YAN, W. & BRADY, J. F. 2014 Swim pressure: stress generation in active matter.

Phys. Rev. Lett. 113, 028103.
TORNEY, C. & NEUFELD, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows.

Phys. Rev. Lett. 99, 078101.
UNDERHILL, P. T., HERNANDEZ-ORTIZ, J. P. & GRAHAM, M. D. 2008 Diffusion and spatial

correlations in suspensions of swimming particles. Phys. Rev. Lett. 100, 248101.
ZEFF, B. W., LANTERMAN, D. D., MCALLISTER, R., ROY, R., KOSTELICH, E. J. & LATHROP, D.

P. 2003 Measuring intense rotation and dissipation in turbulent flows. Nature 421, 146–149.
ZHAN, C., SARDINA, G., LUSHI, E. & BRANDT, L. 2013 Accumulation of motile elongated micro-

organisms in turbulence. J. Fluid Mech. 739, 22–36.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Be

rk
el

ey
 L

ib
ra

ry
, o

n 
18

 F
eb

 2
01

8 
at

 0
3:

21
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.912
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Rotations and accumulation of ellipsoidal microswimmers in isotropic turbulence
	Introduction
	Particle motion
	Ellipsoidal particles
	Equations of particle motion
	Particle trajectories and orientations in turbulence

	Results
	Particle accumulation
	Particle enstrophy
	Particle alignment and rotations about particle axes

	Summary discussion
	Acknowledgements
	Appendix A 
	References


